Nonlinear approximation with dictionaries. II. Inverse estimates
نویسندگان
چکیده
In this paper, which is the sequel to [GN04a], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually incoherent bases introduced by Donoho and Huo. The Bernstein inequality obtained for such dictionaries is proved to be sharp, but it has an exponent that does not match that of the corresponding Jackson inequality.
منابع مشابه
Nonlinear approximation with dictionaries. I. Direct estimates
We study various approximation classes associated with m-term approximation by elements from a (possibly redundant) dictionary in a Banach space. The standard approximation class associated with the best m-term approximation is compared to new classes defined by considering m-term approximation with algorithmic constraints: thresholding and Chebychev approximation classes are studied respective...
متن کاملSome results of 2-periodic functions by Fourier sums in the space Lp(2)
In this paper, using the Steklov function, we introduce the generalized continuity modulus and denethe class of functions Wr;kp;' in the space Lp. For this class, we prove an analog of the estimates in [1]in the space Lp.
متن کاملMultiscale Geometric Methods for Data Sets II: Geometric Multi-Resolution Analysis
Data sets are often modeled as point clouds in R, for D large. It is often assumed that the data has some interesting low-dimensional structure, for example that of a d-dimensional manifold M, with d much smaller than D. When M is simply a linear subspace, one may exploit this assumption for encoding efficiently the data by projecting onto a dictionary of d vectors in R (for example found by SV...
متن کاملA numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کامل